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Abstract

Let F(z) be a vector-valued function, F : C _ C N, which is analytic at z = 0 and mero-

morphic in a neighbourhood of z = O, and let its Maclaurin series be given. In this work we

develop vector-valued rational approximation procedures for F(z) by applying vector

extrapolation methods to the sequence of partial sums of its Maclaurin series. We analyze

some of the algebraic and analytic properties of the rational approximations thus obtained,

and show that they are akin to Pad_ approximants. In particular, we prove a Koenig type

theorem concerning their poles and a de Montessus type thorem concerning their uniform

convergence. We show how optimal approximations to multiple poles and to Laurent

expansions about these poles can be constructed. Extensions of the procedures above and the

accompanying theoretical results to functions defined in arbitrary linear spaces is also

considered. One of the most interesting and immediate applications of the results of this

work is to the matrix eigenvalue problem. In a forthcoming paper we exploit the

developments of the present work to devise bona fide generalizations of the classical power

method that are especially suitable for very large and sparse matrices. These generalizations

can be used to approximate simultaneously several of the largest distinct eigenvalues and

corresponding eigenvectors and invariant subspaces of arbitrary matrices which may or may

not be diagonalizable, and are very closely related with known Krylov subspace methods.



Introduction

Let F(z) be a vector-valued function, F : C --* C N, which is analytic at z = 0 and mero-

morphic in a neighbourhood of z = O, and let its Maclaurin series be given as

where um are fixed vectors in C N.

F(z)- _ u,,z m, (1.1)
rn----.O

In this work we propose three types of vector-valued rational approximation procedures that are

entirely based on the expansion in (1.1) . For each of these procedures the rational approximations

have two indices, n and k, attached to them, and thus form a two-dimensional table akin to tile

Pad_ table or the Walsh array. Let us denote the (n, k) entry of this table by Fn,k(z). Then F,_,k(z),

if it exists, is defined to be of the form

Fn,k(z) = _]_=oC_n'k)zk-JF'_+_'+J(Z) -- Pink(z) with c__'k) = Qn,k(O) = 1,

k -Ej=o

where u is an arbitrary but otherwise fixed integer >_ -1, and

(1.2)

m

Fm(z)= _uiz i, re=O,1,2,...; F,,_(z)=O form<0, (1.3)
i=O

and the _j are scalars that depend on tile approximation procedure being used.

If we denote the three approximation procedures by SMPE, SMMPE, and STEA, then the

c!n'k) =- cj, for each of the three procedures, satisfy a linear system of equations of the form

k-I

___uij cj = --Uik, O < i < k-1; ck = 1, (1.4)
j=O

where uij are scalars defined as

{ (un+i,u,_+j) for SMPE,
u_j = (qi+l,u,_+i) for SMMPE, (1.5)

(q, u,_+i+j) for STEA.

Here (. , .) is an inner product - not necessarily the standard Euclidean inner product - whose

homogeneity property is such that (ax,fly)= Sfl(x,y) for x,y E C N and a,/_ E C. The vectors

ql, q2, ..., form a linearly independent set, and the vector q is nonzero. Obviously, Fn,_,(z) exists if
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the linearsystemin (1.4)hasa solutionfor co, cl, ..., Ck-1.

It is easy to verify that for SMPE the equations in (1.4) involving Co, el, ..., Ok-1 are the normal

equations for the least squares problem

IIk-1 Imin __cj Un+ j + ltn+k ,

CO ,el _..._ck--I j-----O

where the norm [[. [[ is that induced by the inner product (., .), namely, ][x[I = v/_.

(z.6)

As can be seen from (1.4) and (1.5), the denominator polynomial Q,,k(z) is constructed from

un, un+l,...,un+k for SMPE and SMMPE, and from u,_,u,,+l,...,un+2k_l for STEA. Once the

denominators have been determined, the numerators involve Uo, ul, ..., un+v+k for all three approx-

imation procedures.

The approximation procedures above are very closely related to some vector extrapolation meth-

ods. In fact, as is stated in Theorem 2.3 in Section 2, Fn,k(z) for SMPE, SMMPE, and STEA are

obtained by applying some generalized versions of the minimal polynomial extrapolation (MPE),

the modified minimal polynomial extrapolation (MMPE), and the topological epsilon algorithm

(TEA), respectively, to the vector sequence F,,(z), m = 0, 1,2, .... For early references pertaining

to these methods and their description and convergence properties, see the survey paper of Smith,

Ford and Sidi [SmFSi], and for recent developments see the papers by Sidi [Sil] and [Si2], Sidi

and Bridger [SiB], Sidi, Ford, and Smith [SiFSm], and Ford and Sidi [FSi]. The above mentioned

generalizations of vector extrapolation methods are given in [SiB, eqs.(1.16) and (1.17).].

In Theorems 2.1 and 2.2 in Section 2 we show that the approximations F,_,k(z) enjoy some

Pad_-like properties.

In Section 3 we give some simple technical results concerning the structure of the Urn and

Fro(z), m = 0, 1,2,..., when the function F(z) is meromorphic in a disk, and we also introduce

some conditions on F(z) and on the procedures SMPE, SMMPE, and STEA, which seem to be

necessary in order to obtain the main results of Section 4.



Oneof the main aimsof this work is to presenta detailedanalysisof the approximations

F,_,k(z) that have been defined above, for n --* oo. We start by proving a Koenig type theorem for

the denominator polynomials Q,_,k(z). In particular, we analyze the convergence behavior of these

polynomials, and prove that their zeros tend to the k smallest poles of F(z) under certain condi-

tions, providing at the same time precise rates of convergence for them. All this is done in Theorem

4.1 and Theorem 4.5. We next analyze the convergence of the Fn,k(z) in the complex z-plane and

prove a de Montessus type theorem on their uniform convergence. This is done in Theorem 4.2.

Other useful results pertaining to the F,_,k(z) and their poles and corresponding residues are given

in Theorems 4.3 and 4.4 and in Section 5.

It turns out that the denominator polynomials Q,_,k(z) are very closely related to some recent

extensions of the power method for the matrix eigenvalue problem, see [SiB, Section 6] and [Si3].

Specifically, if the vectors um of (1.1) are obtained from um = Aura-l, m = 1, 2, ..., with u0 arbi-

trary, and A being a complex N × N and, in general, nondiagonalizable matrix, then the reciprocals

of the zeros of the polynomial Q_,k(z) are approximations to the largest distinct and, in general,

defective eigenvalues of A under certain conditions. In a forthcoming paper we provide precise

error bounds for these approximations based on the results of Theorems 4.1 and 4.5, where we also

extend the treatment of [SiB] and [Si3] to cover eigenvectors and invariant subspaces. Again, in

the same paper, we explore the connection of this new approach with Krylov subspace methods.

Preliminary results on these issues have already appeared in [Si6].

The techniques that we use in this work are those that were developed in [Sill, [Si3], [SiB],

[SiFSm], and the recent work of Sidi [Si4] on ¢i_s_cal Pad_ approximants. In particular, the treat-

ment of the matrix eigenvalue problem was motivated by the developments of [Si4].

The subject of rational approximations to vector-valued functions has received considerable

attention lately. We shall mention some of the recent literature dealing with functions F(z) that

are defined by their Maclaurin series (1.1). In [Gr] Graves-Morris developed the generalized inverse

vector-valued Pad_ approximants and showed that they are also obtained by applying the vector

epsilon algorithm to the vector sequence Fro(z), m = 0, 1, 2, .... This work was later extended by

Graves-Morris and Jenkins in [GrJ1] and [GrJ2]. Determinantal representations for these rational

approximations are provided in [GrJ2]. In [GrSa] Graves-Morris and Saff analyzed the convergence
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behaviorof theseapproximationsfor functionsF(z) that are meromorphic in a neighbourhood of

the origin, and gave some uniform convergence theorems of de Montessus type. For details and

additional related references we refer the reader to [GrSa].

2 Pad_-Like Properties

From (1.2) and (1.3) it is obvious that the numerator P,_,k(z) of Fn,k(z) is a vector-valued

polynomial of degree < n + v + k, while its denominator Q_,k(z) is a scalar-valued polynomial of

degree k.

The special structure of Fn,k(z) immediately suggests the following Padd-like property:

Theorem 2.1 If it exists, Fn,k(z) satisfies

F(z)- _V_,k(z)=O(z_+"+k+l) as z -_ 0.

Proof." From (1.2) we have

k

Q,_,k(z)F(z)- P,,k(z) = _ cjzk-J[F(z) - F,,+_,+j(z)].
j=o

The result now follows by realizing that F(z) - Fro(z) = O(z re+l) as z ---+ O, m = O, 1, .... []

(2.1)

(2.2)

The property contained in (2.1) is Pad6-1ike in the sense that, for SMPE and SMMPE with

v = 0, F,_,k(z) is constructed using Uo, ul, ..., u,_+k, and F(z) - Fn,k(z) = O(z n+k+l) as z _ 0, while

for STEA with v = k - 1, F,_,k(z) is constructed using Uo, Ul, ..., u,_+2k-1, and F(z) - F,,,k(z) =

O(z '_+2k)as z --, O.

Note that the Pad6-1ike property in (2.1) is a result of (1.2) only , and it does not depend on

how the e i are determined. As such, it cannot be a factor in determining the true behavior of

Fn,k(z) as an approximation to F(z). It is the linear system in (1.4) that determines the behavior

of Fn,k(z) , as we shall see in the next sections.

Using the hnear system in (1.4), we can derive a determinant representation for Fn,k(z) that

resembles the known representation for Pad6 approximants.



Theorem 2.2 F,_,k(z) has the determinant representation

v,,k(z) = n(zkF"+"(z)' z_-lF"+_+l (z), ..., z°f,+_+k(z))
D( z j', z k-1 , ..., z °)

where D(ao, al, ..., ak) is the determinant

D(_o, _l,...,ok) =

In case ai are vectors, we interpret (2.4) as

(70 ffl " " " O'k

Y'00 //'01 " ' " I/0k

Ul0 ?/'11 " " " '//lk

: : :

Uk-l,0 _/'k-l,1 " " " l/k-l,k

k

D(a0, gl, ..., gk) = _ _iNi,
i=0

Ni being the cofactor o/ai in (2.4).

, (2.3)

(2.4)

(2.5)

Proof: Left to the reader. []

We note that the determinant representation above serves as a very useful tool in the analysis

of F,,,k(z).

Finally, the next result sums up the connection between F,_,k(z) and the various vector extrap-

olation methods.

Theorem 2.3 The approzimations Fn,k(z) for the three procedures SMPE, SMMPE, and STEA

are obtained by applying the generalized versions of MPE, MMPE, and TEA, respectively, as they

are given in [SiB] to the vector sequence Fm(z),m = 0, 1,2, ....

Proof: By performing elementary row and column transformations on the determinant represen-

tations given in [SiB, eq. (1.17)], we obtain (2.3). We leave the details to the reader, o



3 Technical Preliminaries and Assumptions

Assume now that the vector-valued function F(z) is analytic at z = 0 and meromorphic in

the disk If = {z : [zl < R}. Let zj _ A_-I,j = 1,2, ...,t, be the distinct poles of F(z) in K, whose

respective multiplicities are pj + 1 -wj,j = 1, 2, ..., t. Let the zj be ordered such that

which implies the ordering

o < Izll _ Iz21_,,, _ Iz,I < R,

l_ll >--I_=l>--... >_[,xt[> R-a.

Consequently, F(z) has the representation

t Pj

(3.1)

(3.2)

where ajt are constant vectors in C N defined as

P_ ( i
hj_ = _, aji

i=l i --

and the vectors h(m,_) = (al(m,_),...,aN(m,_)) T

each i,

[ai(m,¢)i < Md_ ) = max IG_(z)l,
- iz1=¢_1

Here Gi(z) stands .for the ith component of G(z).

,kr_ + 5(m, _)_m, (3.5)

(3.6)

are such that Zt(m,_)_ "_ = gin, and thus, for

_-1 _ (1_,1,R), but arbitrary.

Proofi The proof can be achieved by applying Lemma 4.1 of [St4] to each component of Urn.

;

(3.7)

[]

urn = 5jr
j=l l

aji a(z), (3.3)
r(z)= _ _ "(1-Ajz) i+a +

j=l i=0

where aji are constant vectors in C N, ajpj # O, 1 <_ j <_ t, and G(z) is analytic in K and thus has

the convergent expansion

G(z) = __,gjz _, z 6 K. (3.4)
j=O

Lemma 3.1 The coefficients urn of the power series of F(z) in (1.1) are given by



Lemma 3.2 The partial sums Fro(z) in (1.$) satisfy

F(_)- F,_(_)- bj_(_) (_i.) '_ + b(m,_,z)(_) '_,
j=l l

where bit(z) are vector-valued rational functions of z defined as

i=l h=l h - l

and the vectorsb(m,_,z) = (bl(m,_,z),...,bN(m,_,z)) T are such that, for each i,

Ib_(m,_,z)l <_M_(¢)X-_z I, Izl< ,

M_(_)and _ beingas in (3.7).

(3.8)

(3.9)

(3.10)

Proof: The proof can be achieved by applying Lemma 5.1 of [Si4] to each component of Fro(z). []

and

In the sequel we assume that for the approximation precedures SMPE and SMMPE

t

_-'_(pj + i)= _ wy _< g
j=l j=l

aji, 0 <_ i <_pj, 1 <_ j <_ t, are linearly independent.

Note that (3.12) is possible as the number of the vectors aji is at most N by (3.11).

(3.11)

(3.12)

As a consequence of (3.12) we obtain the following result:

Lemma 3.3 If(3.12) is satisfied, then the vectors 5jt,O _ l _ pj,1 < j _ t, are linearly indepen-

dent.

Proof.' It is enough to show that for each j the vectors _jt, 0 <. l <_ pj, are linearly independent. If

we rewrite (3.6) in the form
Pj

ajl = _allaji, 0 < l < py, (3.13)
i=0
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i ) . p,
where ct:i = , then the matrix [aa]l,;=o is nonslngular. The result now folI0wsfrbm (3112).

i-1 .,

UI ;;

For the approximation procedure STEA, (3.11) and (3.12) are not needed.

Although the assumptions in (_.11) and (3.!2) pertain to the approximation procedures SMPE

and SMMPE, they nevertheless involve only the function F(z). We now make additional assump-

tions that are related more to the approximation procedures as they apply to F(z). We assume

throughout that

(ql,alo) ... (ql,alpl) ... (ql'ato) ... (ql,atp,)

: : : :

(qk,alo) ... (qk,a,pl)... (qk,ato) ... (qk, atp,)

# 0 for SMMPE, (3.14)

and that
t

I-[(q, ajp,) # 0 for STEA.
,: j=l

No additional assumption is needed for SMPE.

(3.15)

In order for (3.14) to hold it is necessary (but not sufficient) that the two sets of vectors

{aj_ :0 < i < pj, 1 _<j _< t} and {ql, "",qk}, each be linearly independent, as has already been as-

sumed.

4 Main Results

Our first result concerns the denominator polynomial Qn,k(z) of F,_,k(z) and its zeros for

n _ oo, and is an analogue of the generalized Koenig's theorem for Pad_ approximants and of

Theorem 3.1 in [Si4]. The notation is identical to the one introduced in Section 3.

Theorem 4.1 Assume that the vector-valued function F(z) is as described in the first paragraph of

Section 3, and that, for the approximation procedures SMPE and SMMPEI F(z) satisfies (3.11)

and(3.12), in addition. Assume furthermore that (3. I4) and (3.15) are':sa[is_fie_d fo_r_SMM PE and
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ST E A respectively. Then, provided

k = _-']wi, (4.1)
j=l

thepolynomialQ,,k(z) = E_:o -(",_)zk-_e(;',k) 1, existsfor all su_ciently largen, and satiCes

O,.,k(_) II(1- _jz)_,+o z,= as n _ _, (4.2)
j=l

where R1 E (Iz,I,R), butRI is arbitrary otherwise. Consequently, Qmk(z), for n ---, c_, has wj zeros

zjt(n), 1 < l < wj, that tend to zj,j = 1,2,...,t. For eaeh j and l we have

Um.,sup zjt(n)- zj < -_ •

Let us denote

_ rZ =jr(n). (4.4)
Then

urn_sup _i(n)- zi <- -_ "

Also the pith derivative of Q,,k(z) has exactly one zero _j(n) that tends to zj and satisfies

limsupl _,(n) zj 11/n I ]zJ (4.6)

In case the function F(z) has only polar singularities on the circle OK = {z : Izl= R}, the results

in (4.2), (4.3), (4.5), and (4.6) can be strengthened to read precisely

t

Q,,k(z) = 1"[(1 - Ajz)"'-' + O(,(n)) as n ---*oo, (4.7)
j=l

_#(n) - _j = O(_(n)_/_,) _s n --*oo, "" (4.8)

_j(n) - zj = O(6_(n)) as n ---+oo, (4.9)

and

_,j(n) - zj = O(6j(n)) as n _ oo, (4.10)

respectively, where

I r4n) = n_ -- and ej(n) = n_ -_ .

Here c_ is some nonnegative integer, and _ + 1 is the mazimum of the multiplicities of the poles

lying on OK. Also, if the poles whose moduli are Iztl are simple, then _ = "_. Finally, let us define

,x-- 1/_,_jt(n) - 1/zjt(_), andset
_j

1 _ )_j_(n). (4.12)_,(n) = _--jt:,

11



Then $./t(n), 1 < l < wj, are the zeros of the polynomial in )_ On,k()_) = z-kQ,,k(z) that tend to

)U" Similarly, the pith derivative of O,n,k()_) has a unique zero )u(n) that tends to )_j = 1/zj as

n --. c_. The results in (4.S), (4.5), and (4.6), and in (4.8)- (4.I0) hold also when the z's on the

left hand sides are replaced by the corresponding )_'s.

Proof: We do not intend to give the proofs of all of the results stated above. We shall be content

with a short sketch of the proof of (4.2), and refer the reader to the appropriate references for the

rest.

I

D(A °, A1, ..., Ak) = W ]
I

being as in (3.7). Here

We start by observing that it is sufficient to analyze the determinant

D()_ °, )0, ..., Ak) = z-kD(z k, z k-l, ...,z°), which is proportional to (_n,k(_), which, in turn, is pro-

portional to Q,_.k(z). Employing Lemma 3.1, we obtain the asymptotic behavior of the uij in (1.5)

for SMPE, SMMPE, and STEA. Substituting this in the determinant representation of (2.4) and

following [SiB, Section 5.3], we obtain, for SMPE,

F[[I_? II(_- _J)_+° as n-_ _, (4.13)
j=l j----1

t
p_(p_+1)/2

W = (-1)k2 1-I Aj II (),j _ Ai)_,,o,J (4.14)
j=l l<_i<j<t

where 2 is the Gram determinant of the k vectors 5jt,O <_l <_pj, 1 <_ j <_ t. By the assumption

(3.12), Lemma 3.3 holds, so that these vectors are linearly independent. Consequently, 2 > 0,

hence W _ 0 for SMPE. For SMMPE and STEA, following [SiB, Sections 5.1 and 5.2] , we obtain

H)_J l-_()_-)U)%+O as n -_ oo. (4.15)
j=l j=l

j=l l<_i<j<_t

(4.16)

/

D(A0, _1, ..., Ak) = W /

Here
/

W = (-1)k2 (

where 2 is the k × k determinant

._

Zlo,1 • • • Zlpl 1 • • • Zto,1 , • • Ztpt,1

Z10,2 . • • Zlpl,2 • • • Zto,2 " " " Ztpt,2

: " : •

ZlO,k •.. Zlpl,k •.. ZtO,k ... Ztpt,k

(4.17)
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with

for SMMPE, and

zfl,h = (qh, _tjt) (4.18)

Ps (h-l) h-1 (4.19)
zSt,h= aji) As

i=l i- I

for STEA. Performing elementary column transformations on (4.17), it can be shown that. Z for

SMMPE is equal to the determinant in (3.14), while 2 for STEA is equal to

t P,(P,+I)[2 ) ( 1-[l<i<j<t(A j )ti)wi_,j ).(-1)_=1P_(PJ+I)I2 ( I-I}=a(q, ajpj)_ )( 1-Ij=l Aj ' -

By what has been assumed, we see that 2 ¢ 0, hence W ¢ 0 for SMMPE and STEA.

By W ¢ 0, the proof of (4.2) is now complete for SMPE, SMMPE, and STEA. The rest of the

theorem can be proved by employing the techniques that were used in the proof of Theorem 3.1 of

[si4].

The results of Theorem 4.1 are optimal, in general. For one important special case, however, the

results pertaining to the SMPE approximations can be improved considerably. In this special case

the function F(z) is rational with simple poles and its residues form an orthogonal set of vectors

with respect to the inner product (., .). We postpone the presentation of these results to Theorem

4.5 at the end of this section.

Our next result concerns the convergence of F,,,k(z) for n _ o¢, and is an analogue of de Montes-

sus's theorem for Padd approximants and of Theorem 3.3 in [Si4]. Below and in the remainder of

this work we are going to use ]f] to also mean the norm of f in case f E C N.

Theorem 4.2 Let F(z) and F,_,k(z) be exactly as in Theorem 4.1. Then, as n --* c_, F,_,k(z) con-

verges to F(z) uniformly in any compact subset of K\ {zl, ...,z t}. In fact,

Fn,k(z)- F(z) = 0 N as n --* oo, (4.20)

uniformly in any compact subset of K\{zl,...,zt), RI being, as in Theorem 4.1, in (Izd,R), but

arbitrary otherwise. In case F(z) has only polar singularities on OK = {z: M = R}, this result

13



can be improved to read precisely

Fn,k(z) - F(z) = 0 -R as n --, oo, (4.21)

uniformly in any compact subset of K\ {zl, ..., zt}, where _ + 1 is the maximum of the multiplicities

of the poles of F(z) that lie on OK.

Proof: We start by noting that

F.,k(z) - F(z) =

where o'j =

D(ao, a],...,ak) En,k(Z)

D(zk, zk_,,...,z o) =--D(zk,...,zO),

zk-J[Fn+_,+j(z) - F(z)], 0 _<j _< k. (4.22)

Next, by employing (3.5) and (3.8) in the determinant representation of En,k(z), and following [SiB,

Section 5.3], we obtain, for SMPE,

(i 12n)En,k(z) = 0 IT ,_J (nzn as n ---*c_, (4.23)
j=l

being as in (3.7). The result in (4.20) for SMPE now follows by combining (4.23) and (4.13)in

(4.22). For SMMPE and STEA, following [SiB, Sections 5.1 and 5.2], we obtain
i

(i, )En,k(z) = 0 I-I )_J _'_zn as n _ oo. (4.24)
j=l

The result in (4.20) for SMMPE and STEA now follows by combining (4.24) and (4.15) in (4.22).

Both (4.23) and (4.24) hold uniformly in any compact subset of K\{z_, ..., zt} since the functions

bit(z) and b(m, _, z) are all uniformly bounded away from the poles zl, ..., zt. Consequently, (4.20)

holds uniformly in any compact subset of K\{zl, ...,zt}. The proof of (4.21) can be achieved simi-

larly. D

Our next result shows how F,_,k(z) can be used to construct the principal part of the Laurent

expansion of F(z) about any of the poles zl,..., zt with optimal accuracy.

Let us rewrite (3.3) in the form

t Pj djir(z) = _ _ (__-7)+, + C(z),
j=l i=O

where

dji = (--zj)i+laji for all j,i.

(4.25)

(4.26)
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Theorem 4.3 Let F(z) and Fn,k(z) be ezactly as in Theorem 4.1. Denote

_j(n) -" _.j(n) or _j(n) -- 1/Aj(n) or ffj(n) = 5j(n) or ffj(n) = 1/Aj(n), (4.27)

and denote the residue of the rational function (z - (j(n))iFn,k(z)

0 < i < pj. Then

at zjt(n) by dji,t(n), 1 < 1 < wj,

i i1, 1 zj (4.28)limsup _dji,t(n) " dji <_ _ •
n---*oo /=1

Proof: Let Kj = {z : [z - zjl < e} with e > 0 chosen sufficiently small to ensure that Kj contains

only zj and no other poles of F(z). By TheorEm 4.1, for n sufficiently large, Kj contains only

zjt(n), 1 < l < wj, and no other poles of F,,,k(z). Let ogj denote the boundary of Kj. By the fact

that (4.20) holds uniformly in any compact subset of K\{zl, ..., zt}, we have

max I fn,k(z) - F(z) I -- 0 ( [ IzJl q- e in) as n_, (4.29)z_og_ R1

R1 being as in Theorems 4.1 and 4.2. We now note that

1 fo (z- zj)iF(z)dz (4.30)

and, for n sufficiently large,

_,_' dji,t(n) = _1 foK,(z - _j(n))iF_,k(z)dz. (4.31)
l=l

Consequently,

where

_' 1 fo A.,k(_) d_, (4.32)_-_dji't(n) - dJi = "_i KS
l=l

/x,,k(z) = (z - _j(n))iF_,k(z) - (z - zj)iF(z) dz. (4.33)

Now

IAn,_(z)l ___Iz - Cj(_)lqF,,,k(z) - F(z)l q- I(z - Cj(n))' - (z - zj)'llF(z)l. (4.34)

Thefirsttermontherighthandsideof(4.34) isO( [ IzJl+e ]_) asn-*_,by(4.29).Also,
R1

(z - Cj(n))_- (_ - _j)_ =
i-1

(_j - Cj(n))_ (_- Cj(n))_(_- _)_-_-_
m=O

(4.35)
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byTheorem4.1,c.f. (4.5) and(4.6). Combining(4.29)and (4.35)in (4.34),weobtain

limsup max /kn,k(z ) < -_ .n---*oo zeOKj

Taking the modulus of both sides of (4.32), and employing (4.36), (4.28) now follows. []

(4.36)

It is interesting to note that the technique used in the proof of Theorem 4.3 can be used to

prove other useful results concerning F(z). One such result is given in Theorem 4.4 below.

Theorem 4.4 Let F(z) and F,,,k(z) be as in Theorem 4.1, and let H(z) be analytic in a neigh-

bourhood of zj. Then

lim sup
¢vj

1 _-_H(zjt(n))- H(zj)
Wj l=l

1/.,

Proof: Let the disk Kj in the proof of Theorem 4.3 be so small that it does not include any of the

zeros of F(z). Then there is a constant vector w E C N for which (w, F(z)) _ 0 on gKj. Thus

and

 jH(zj) = ,l zj_ .... (w,F'(z)) (4.38)

PJ 1 fo (w'F_'k(z)) dz. (4.39)- _7, H(zjl(n))= _ KjH(Z)(w, Fn,k(z))
1=1

The rest of the proof can now be completed as that of Theorem 4.3. []

It is easy to see that, letting H(z) = z in (4.37), we obtain the result in (4.5) that pertains to

_j(n). Similarly, letting H(z) = z -1 in (4.37), we obtain the analogous result pertaining to £j(n).

The stronger result for _j(n) given in (4.9), and the corresponding result for £j(n), cannot be ob-

tained from Theorem 4.4, however.

We now give the improved version of Theorem 4.1 for the special case mentioned following the

proof of Theorem 4.1.
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Theorem 4.5 Let the vector-valued function F(z) in Theorem 4.1 be rational with simple poles,

i.e._

# aj

F(z) -- 1 - + a(z), (4.40)

where aj are constant vectors in C N and G(z) is a vector- valued polynomial. Assume furthermore

that # <_ N and that

Then, provided

(aj, ah) = 0 if j _ h. (4.41)

IZkl < Izk+ll or equivalently IAkl > IAk+,l, (4.42)

the polynomial Q,_.k(z) associated with the SMPE approximation procedure exists for all n suffi-

ciently large, and satisfies

(I ?)Qn,k(z) 1-I(1 )Uz)+O zk= - -- as n ---*ec. (4.43)
j=, Zk+l

Consequently, Qn,k(z), for n _ e¢, has exactly one zero zj(n) that tends to zj,j = 1,2, ...,k. For

each j, 1 < j <_ k, we have

zJ(n) - zJ = O ( I zk+lzJ 2n ) as n _ oo, (4.44)

and this holds true also when zj(n) and zj on the left hand side are replaced by Aj(n) = 1/zj(n)

and Aj = 1/zj.

Proof: We start by observing that, from (4.40) and the fact that G(z) is a polynomial, we have

#

um = _ ajA_ for all sufficiently large m. (4.45)
j=l

The result now follows from Theorem 2.1 in [Si3], where the most dominant term of the asymptotic

expansion of Aj(n) - )_j for n --, _ is given explicitly. []

It is important to note that the condition given in (4.1) for Theorems 4.1 and 4.2 seems to be

crucial as far as the convergence of Q,_,k(z) and F,_,k(z) is concerned. According to this condition, k

is the precise number of poles counted according to their multiplicities contained in K. When this

condition is not satisfied, i.e., when k is larger than this number, we cannot expect convergence to

take place, in general. When the only singularities on OK are poles, however, it might be possible

to obtain some convergence results under certain conditions when k is greater than the number of
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polesin K but smaller than the number of poles in K U OK. Interesting results for this problem

pertaining to classical Pad6 approximants have been given in [Si4, Section 6]. Analogous results

that form an extension of Theorem 4.5 have been provided in [Si3, Section 3]. We do not intend to

go into this matter in the present work, however.

5 Further Results on Residues

From the way the denominator polynomial Qn,k(z) of F,.,,k(z) is constructed, it is clear that

the approximations 2j(n) and 2j(n) to zj,j = 1,2, ...,t, are obtained from the vectors u,.,, urn+l,..., u,-,+k

in the case of the SMPE and SMMPE procedures, and from u,_,u,.,+l,...,u_+2k-1 in the case of

the STEA procedure. This means that the vectors u0, Ul, ...,u,__l need not be saved if we are only

interested in approximating the smallest poles of F(z). This is important since we are considering

the limiting process in which n _ co.

From (4.25) and (4.26) and Theorem 4.3, the approximation to the vector aji is given as

= _1=1 dji,l(n). We now show that the computation of the vectors aji(n) can be

made to enjoy the same property in the sense that knowledge of u0, ul, ..., un-1 is not essential in

this case either.

Let us write the vectors dji,t(n) introduced in Theorem 4.3 explicitly. By the fact that zj_(n) is

a simple pole of Fn,k(z) for n sufficiently large, we have

_'_k _(n,k)zk-rF, [Z _

djl,t(n) = (z - _.(n _i z_.r=___._o"Z..__ ,_+v+rt___..) (5.1)

Writing F,_+_+r(z) = F_+_(z) + _m=n+.+_ Um zm in (5.1), and using the fact that

k c!n,k)zk-r_r=o [_=z_(.) = O, we obtain

k c!n,k)zk-r _'-_n+ v+r
[-.,rn=n+v+ l llm zm

dji,t(n) = (z - ¢j(n)) iE'=° k t,=;_,,(n), (5.2)
E =o g,,,k)(k- T)zk--r-1

in which the absence of the vectors u0, Ul, ...,Un-1 is transparent.

Developing the approach that leads to (5.2) further, in the remainder of this section we give

approximants to the aji that are different from the aft(n) above. These new approximations will

be used in the treatment of the matrix eigenvalue problem in the next section.

Consider the meromorphic function

_F(z) = F(z) - F_+_,(z) (5.3)
Zn+V+l
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whichis analyticat z = 0 and has the Maclaurin series expansion

By (4.25) we can write

t(z) = _ u.+_+_+,zi.
i---O

_(_) = _ (z: _),+, + 4j(z),
i=O

where

dj, = V _-_-' F_, _7'+%',
_=i 1 - i

and Gj(z) is analytic at zj. Consequently,

1 _ (__ _j)_P(z)dz,

with the disk Kj as in the proof of Theorem 4.3.

Consider next the rational function

(5.4)

(5.5)

(5.6)

(5.7)

Zn+V+l
(5.8)

Denote the residue of (z - (j(n))iPn,k(z) at zjt(n) by dji,t(n), 1 < l < wj, and let

_oj

l=l

Then

(5.9)

1 fo (z- ¢j(n))ifi'n,k(z)dz (5.10)

for n sufficiently large.

Subtracting (5.7) from (5.10), invoking (5.3) and (5.8), and observing that the contribution of

the polynomial Fn+v(z) is zero, we obtain

1 f A.,k(Z)d_' (5.11)
dan)- ds_= _ JoK, zn+v+l

with An,k(z) as defined in (4.33). Following now the proof of Theorem 4.3, we obtain

dji(n) - d;.i['/'_ < R-'. (5.12)limsup

It is important to note that

dji,t(n) = dji,l(n)/zjt(n) n+_'+l

k c!"'k)zk-_E_,=a U-+_+mZ"-_= (_- _j(n))_E_=o
k r)zk_r_lEr=OC!'_'k)(k --

I,=,j, (,), (5.13)
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sothat the factor zjt(n) n has disappeared from dji,t(n). Consequently, dji(n) does not involve the

factors zj1(n) n, 1 < l < wj. In view of the fact the we are interested in the limit as n _ ec, the

absence of the zfl(n) n is expected to have a stabilizing effect in actual numerical computations. In

fact, the developments of this section were prompted also by the desire to eliminate the factors

zjt(n)'* from the approximations to the aft. We shall make use of these new approximations to the

aji in our treatment of the matrix eigenvalue problem in the future.

6 Extension to General Linear Spaces

In the previous sections we considered F(z) to be a function from C to C N. We would now

llke to explore the possibility that F(z) is a function from C to a general linear space B. We note

that in [Sil], [Si3], [SiB], and [SiFSm] vector extrapolation methods were defined and analyzed for

sequences in such spaces under certain assumptions.

There seems to be no problem in defining the rational approximation procedures SMPE, SMMPE,

and STEA in general spaces. We only need to demand that B be

(i) an inner product space for SMPE,

(ii) a normed space for SMMPE and STEA.

Then if F(z) is as given in (1.1) with Um E B, m = 0, 1, ..., the rational approximations F,_,k(z) to

F(z) are exactly as in (1.2) and (1.3). The scalars c__'k) again satisfy the linear equations in (1.4)

with uij defined by

(un+i,u,_+j) for SMPE,
u0= Qi+l(un+j) for SMMPE,

Q(u,_+i+j) for STEA.

(6.1)

Here too (., .) is the inner product associated with the inner product space B, whose homogeneity

property is such that (ax, fly) = -_(x, y) for x, y C B and c_, fl E C. Q1,..., Qk, and Q are bounded

linear functionals on the normed space B, and Q1,...,Qk are, of course, assumed to be linearly

independent. In case B is a complete inner product space in addition to being a normed space,

the functionals Q1, ...,Qk and Q ha'_e unique representers ql, ..., qk, and q, respectively, in B, so

that uij for SMMPE and STEA become

(qi+l,U,_+j) for SMMPE, (6.2)uij = (q, u,_+i+j) for STEA,

c.f. (1.5).
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With F,_,k (z) properly defined, we now go on to discuss the extension of Theorems 4.1-4.4. Going

through the proofs of these theorems, we see that they hold when F(z) satisfies the conditions

stated in Section 3 provided (3.7) and (3.10) are interpreted in a suitable manner. Thus, (3.7) is

interpreted as

la( m, _)1 < M(_) =

while (3.10) is interpreted as

with

max IG(z)l, _-1 e (Iztl,R), but arbitrary,
Izl=_-1

(6.3)

[b(m,_,z)[ < M(_)-1 [_z[ [z[ < _-1, (6.4)- -I_zl'

M(_) as in (6.3). As before, If[ stands for the norm of f when f E B. In case B is an

inner product space, this norm can be taken to be the one induced by the inner product. Also, in

case B is only a normed linear space, in the proof of Theorem 4.4 the assertion (w, F(z)) _ O on

OKj is replaced by T(F(z)) _ 0 on OI;_, where T is some bounded linear functional on B.

The result given in Theorem 4.5 can be maintained both when F(z) is a rational function and

when F(z) has an infinite number of poles so that the um satisfy asymptotically

OO

u,_ ,._ _ ajA? as m _ co. (6.5)
j=l

Precisely this is the subject of [Si3].

Finally, we mention that one immediate application of the rational approximation procedures

is to the solution of the operator equation

where A is a bounded linear operator on

has the convergent Maclaurln expansion

CO

X --" _-4 'Um zrn

m----O

x = zAx + b (6.6)

B. In this case the solution x = (I- zA)-lb to (7.6)

with u,_ = Arnb, m = 0, 1, .... (6.7)

Under appropriate conditions on the spectrum of A all of the results of Sections 4 and 5 hold. We

leave out the details.
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